Birzeit University
 Department of Physics
 Quantum Mechanics Phys635
 Fall 2018
 Final Exam, Jan. 2nd 2019

1. Consider a particle of mass m and charge q that moves in the two dimensional x - y plane with the Hamiltonian:

$$
\begin{array}{r}
\hat{H}=\frac{\left(\hat{P}_{x}+\hat{Y} q B / 2\right)^{2}}{2 m}+\frac{\left(\hat{P}_{y}+-\hat{X} q B / 2\right)^{2}}{2 m} \\
\omega=\frac{q B}{m}
\end{array}
$$

(a) (10 points) Show that \hat{L}_{z} commutes with the Hamiltonian.
(b) (10 points) Define the following operators:

$$
\begin{gathered}
\hat{V}_{x}=\frac{\left(\hat{P}_{x}+\hat{Y} q B / 2\right)}{m} \\
\hat{V}_{y}=\frac{\left(\hat{P}_{y}+-\hat{X} q B / 2\right)}{m}
\end{gathered}
$$

Show that $\left[\hat{V}_{x}, \hat{V}_{y}\right]=\frac{i \hbar \omega}{m}$
(c) (15 points) Show that using the results of the previous part, the Hamiltonian can reduce to the one of a harmonic oscillator.
2. Consider an isotropic harmonic oscillator in two dimensions. The Hamiltonian is given by:

$$
\hat{H}_{0}=\frac{\hat{P}_{x}^{2}+\hat{P}_{y}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(X^{2}+Y^{2}\right)
$$

(a) (10 points) What are the energies of the three lowest-lying states? Is there any degeneracy?
(b) (15 points) Apply a perturbation $V=\delta m \omega^{2} X Y$, where δ is a dimensionless real number much smaller than unity. Find the zeroth-order energy eigenket and the corresponding energy to first order [that is, the unperturbed energy obtained in the previous part plus the first-order energy shift] for each of the three lowest-lying states.
(c) (15 points) Solve the $H_{0}+V$ problem exactly. Compare with the perturbation results obtained in the second part.
3. (25 points) Phase space is defined by the position and momentum. Show that:

$$
T\left(x_{0}, p_{0}\right)=e^{\frac{i\left(X p_{0}-P x_{0}\right)}{\hbar}}
$$

4. (20 points) Three matrices M_{x}, M_{y}, M_{z}, each with 256 rows and columns, are known to obey the commutation rules
$\left[M_{x}, M_{y}\right]=i M_{Z}$ (with cyclic permutations of x, y and z). The eigenvalues of the matrix M_{x} are ± 2, each once; $\pm 3 / 2$, each 8 times; ± 1, each 28 times; $\pm 1 / 2$, each 56 times; and 0,70 times. State the 256 eigenvalues of the matrix $M^{2}=M_{x}^{2}+M_{y}^{2}+M_{z}^{2}$.

Good Luck

Question:	1	2	3	4	Total
Points:	35	40	25	20	120
Score:					

